Soot particle disintegration and detection by two-laser excimer laser fragmentation fluorescence spectroscopy.

نویسندگان

  • Christopher B Stipe
  • Donald Lucas
  • Catherine P Koshland
  • Robert F Sawyer
چکیده

A two-laser technique is used to study laser-particle interactions and the disintegration of soot by high-power UV light. Two separate 20 ns laser pulses irradiate combustion-generated soot nanoparticles with 193 nm photons. The first laser pulse, from 0 to 14.7 J/cm2, photofragments the soot particles and electronically excites the liberated carbon atoms. The second laser pulse, held constant at 13 J/cm2, irradiates the remaining particle fragments and other products of the first laser pulse. The atomic carbon fluorescence at 248 nm produced by the first laser pulse increases linearly with laser fluence from 1 to 6 J/cm2. At higher fluences the signal from atomic carbon saturates. The carbon fluorescence from the second laser pulse decreases as the fluence from the first laser increases, suggesting that the particles fully disintegrate at high laser fluences. We use an energy balance parameter, called the photon/atom ratio, to aid in understanding laser-particle interactions. These results help define the regimes where photofragmentation fluorescence methods quantitatively measure total soot concentrations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement of polystyrene nanospheres using excimer laser fragmentation fluorescence spectroscopy.

Monodisperse polystyrene nanospheres with a mean diameter of 102 nm are photofragmented with 193 nm light in N2 at laser fluences from 1 to 20 J/cm2. Carbon atom fluorescence at 248 nm from the disintegration of the particles is used as a signature of the polystyrene. The normalized fluorescence signals are self-similar with an exponential decay lifetime of approximately 10 ns. At fluences abov...

متن کامل

Excimer laser fragmentation-fluorescence spectroscopy as a method for monitoring ammonium nitrate and ammonium sulfate particles.

Excimer laser fragmentation-fluorescence spectroscopy (ELFFS) is shown to be an effective detection strategy for ammonium nitrate and ammonium sulfate particles at atmospheric pressure and room temperature. Following photofragmentation of the ammonium salt particle, fluorescence of the NH fragment is observed at 336 nm. The fluorescence signal is shown to depend linearly on particle surface are...

متن کامل

In situ , real - time detection of soot particles coated with NaCl using 193 nm light

We report in situ, real-time detection of soot particles coated with NaCl using excimer laser fragmentation fluorescence spectroscopy (ELFFS). Carbon atom fluorescence at 248 nm and the Na D-line at 589 nm are used as signatures of soot and NaCl, respectively. Soot particles are encapsulated with a NaCl layer in a well-controlled inverted flame burner. NaCl particles are injected into the metha...

متن کامل

Size Distribution Measurement of Candle\'s Soot Nanoparticles by Using Time Resolved Laser Induced Incandescence

Time resolved laser induced incandescence (LII) technique is used to measure size distribution of soot nanoparticles of candle's flame. Pulsed Nd:YAG laser is used to heat nanoparticles to incandescence temperature and the resulting signal is measured. Mass and energy balance equations are numerically solved to calculate temperature of soot particles in low fluence regime. Assuming Plank black ...

متن کامل

Nanoparticle production by UV irradiation of combustion generated soot particles

Laser ablation of surfaces normally produce high temperature plasmas that are difficult to control. By irradiating small particles in the gas phase, we can better control the size and concentration of the resulting particles when different materials are photofragmented. Here, we irradiate soot with 193 nm light from an ArF excimer laser. Irradiating the original agglomerated particles at fluenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 44 31  شماره 

صفحات  -

تاریخ انتشار 2005